™
A A F A %
< olleco

e oOoT Emnmgimeaarrinmcg

Computer Science & Engineering

Data Communication and Computer
Networks

(MTCSE-101-A)

DATA COMMUNICATION AND
COMPUTER NETWORKS: syllabus

* UNIT3

* Transport layer: Transport layer services , UDP,
TCP Protocols, TCP services , TCP features,
Connection Management, Congestion control
SCTP Protocol (Stream Control Transmission

Protocol), SCTP Services, SCTP features, an SCTP
Association

* Application layer: SMTP, POP, IMAP and MIME
,DHCP (Dynamic Host Configuration Protocol),
DHCP Operations , Configuration FTP, SSH

Transport layer protocol

e The transmission control protocol (TCP) is used for
applications in which reliable connections between hosts
are necessary. TCP checks for transmission errors, lost
packets, packets out of order, etc, and tries to automatically
correct these without "bothering" the application program.
It also does flow control, slowing transmission if it is too
fast for the receiver.

e The user datagram protocol (UDP), is an unreliable
transport protocol with no sessions or flow control and
optional error checking. UDP just sends packets as soon as
requested and forgets about them. It is faster than TCP, and
is suitable for isochronous applications like voice over
IP (VOIP) or streaming video where error correction is
pointless.

TCP-TRANSMISISON CONTROL
PROTOCOL

Overview

TCP = Transmission Control Protocol

* Connection-oriented protocol

* Provides a reliable unicast end-to-end byte
stream over an unreliable internetwork.

i

TCP

yte Stream

Byte Stream

B

—
@)
U

i IP Internetwork

TCP
Transmission Control Protocol

 TCP is an alternative transport layer
protocol over IP.

* TCP provides:
— Connection-oriented
— Reliable
— Full-duplex
— Byte-Stream

Connection-Oriented

e Connection oriented means that a virtual
connection is established before any user
data is transferred.

* |fthe connection cannot be established - the
user program is notified.

* |f the connection is ever interrupted - the
user program(s) is notified.

Reliable

* Reliable means that every transmission of data is
acknowledged by the receiver.

* |If the sender does not receive acknowledgement
within a specified amount of time, the sender
retransmits the data.

* Byte stream is broken up into chunks which
are called seg-ments

* Receiver sends acknowledgements (ACKSs) for
segments

« Detecting errors:

Byte Stream

e Stream means that the connection is
treated as a stream of bytes.

* The user application does not need to
package data in individual datagrams (as
with UDP).

Byte Stream Service

* To the lower layers, TCP handles data in blocks,
the segments.

* To the higher layers TCP handles data as a
sequence of bytes and does not identify
boundaries between bytes

So.
beginningbna

seg

1. write 100 bytes
2. write 20 bytes

Application

TCP

queue of
bytes to be
transmitted

o not know a

Application

1. read 40 bytes
2. read 40 bytes
3. read 40 bytes

“endor

— — — — — —

_— queue of
- bytes that

TCP have been

received

10

Buffering

 TCP is responsible for buffering data
and determining when it is time to
send a datagram.

* |tis possible for an application to tell
TCP to send the data it has buffered
without waiting for a buffer to fill up.

Full Duplex

 TCP provides transfer in both directions.

* To the application program these appear as 2
unrelated data streams, although TCP can
piggyback control and data communication by
providing control information (such as an
ACK) along with user data.

TCP Segments

* The chunk of data that TCP asks IP to
deliver is called a TCP segment.

* Each segment contains:
— data bytes from the byte stream

— control information that identifies the
data bytes

TCP Segment Format

LL

TCP Segment Format

Ak Acknowledgement field is valid

FP=H Thiz segment requires a push

R=T Heset the cannection

= —ynchronise sequence numbers

FIrd —ender has reached end of ts byte stream

a 4 10 16 19 24 31
mource Paort | Destination FPort
—eguence Mumber
Acknowledgerment Mum ber
q HLEM Hesemed |C|:u:|e Eits Wi arew
q hecksurm Lrgent Paointer
Clptions (if any) § Fadding
Data
Code Bits: LUREG Ument Pointer field is valid

B Dy B Twidle 1957

11

EA 537 — @ail 1997

TCP header fields

e Port Number:

* A port number identifies the endpoint of a connection.

* Apair <IP address,
endpoint of a connection.

* TWo pairs<client IP address,
number> and <server IP address,

port number> identifies one

numbeApplifgientify a TCP connection.

QG

Ports:

80 104

TCP

———

IP

N

-

server
Applications

server port

port

S

TCP
4¢—
IP

Ports:

15

TCP header fields

* Sequence Number (SeqNo):
— Sequence number is 32 bits long.
— So the range of SegNo is

0 <=SeqNo <=232-1 ~ 4.3 Gbyte

— Each sequence number identifies a byte in the
byte stream

— Initial Sequence Number (ISN) of a connection is
set during connection establishment

16

TCP header fields

 Acknowledgement Number (AckNo):

— Acknowledgements are piggybacked, l.e

a segment from A -> B can contain an
acknowledgement for a data sent in the B -> A direction

— A hosts uses the AckNo field to send

acknowledgements. (If a host sends an AckNo in a segment it
sets the “ACK flag”)

— The AckNo contains the next SeqNo that a hosts
wants to receive 17

TCP header fields

* Acknowledge Number (cont’d)

— TCP uses the sliding window flow protocol to
regulate the flow of traffic from sender to receiver

— TCP uses the following variation of sliding window:

— no NACKs (Negative ACKnowledgement)
— only cumulative ACKs

 Example:

Assume: Sender sends two segments with “1..1500”
and “1501..3000”, but receiver only gets the
second segment.

In this case, the receiver cannot acknowledge the
cecond nacket It can onlv send AckNo=1

18

TCP header fields

 Header Length (4bits):

— Length of header in 32-bit words

— Note that TCP header has variable length (with
minimum 20 bytes)

19

TCP header fields

* Flag bits:
— URG: Urgent pointer is valid

— If the bit is set, the following bytes contain an urgent message in the range:

SeqNo <= urgent message <= SeqNo+urgent pointer

— ACK: Acknowledgement Number is valid
— PSH: PUSH Flag

— Notification from sender to the receiver that the receiver should pass all data that it has to
the application.

— Normally set by sender when the sender’s buffer is empty

20

TCP header fields

* Flag bits:
— RST: Reset the connection

— The flag causes the receiver to reset the connection

— Receiver of a RST terminates the connection and indicates higher layer application about the
reset

— SYN: Synchronize sequence numbers

— Sent in the first packet when initiating a connection

— FIN: Sender is finished with sending

— Used for closing a connection
— Both sides of a connection must send a FIN

21

TCP header fields

e Window Size:

— Each side of the connection advertises the
window size

— Window size is the maximum number of bytes
that a receiver can accept.

— Maximum window size is 216-1= 65535 bytes

e TCP Checksum:

— TCP checksum covers over both TCP header and
TCP data (also covers some parts of the IP header)

* Urgent Pointer: s

 — '] e B o A & =®m GEE S ol |

The TCP Segment Format

TCP Lingo

When a client requests a connection it sends a
“SYN” segment (a special TCP segment) to the
server port.

SYN stands for synchronize. The SYN message
includes the client’s ISN.

ISN is Initial Sequence Number.

Every TCP segment includes a Sequence
Number that refers to the first byte of data
included in the segment.

Every TCP segmentindciudés an

And more...

 There are a bunch of control flags:
— URG: urgent data included.

— ACK: this segment is (among other things) an
acknowledgement.

— RST: error — connection must be reset.
— SYN: synchronize Sequence Numbers (setup)
— FIN: polite connection termination.

e MSS: Maximum segment size (A TCP option)

* Window: Every ACK includes a Window field
that tells the sender-howamany bytes it can

TCP Connection Creation

Programming details later - for now we are
concerned with the actual communication.

A server accepts a connection.

— Must be looking for new connections!

A client requests a connection.

— Must know where the server is!

A client starts by sending a SYN segment with
the following information:

— Client’s ISN (generated pseudo-randomly)

— Maximum Receive ¥Kiindow for client.

Server Response

* When a waiting server sees a new
connection request, the server sends back a
SYN segment with:

— Server’s ISN (generated pseudo-randomly)
— Request Number is Client ISN+1

— Maximum Receive Window for server.

— Optionally (but usually) MSS

— No payload! (Only TCP headers)

* When the Server’s SYN is received, the
client sends back an ACK with:

Netrpoy 2002 TXH/[H
— Acknowledement Number is Server’s ISN+1

Client

L-.__

A/II e
ISN=Y ACK=X+1
\“ ack-y+1 ©

Netprog 2002 TCRIIP

TCP 3-way handshake

0 Client: “I want to talk, and I’'m starting with byte
number X”.

9 Server: “OK, I'm here and I'll talk. My first byte will
be called number Y, and | know your first byte will
be number X+1”.

Client: “Got it - you start at byte number Y+1".

Bill: “Monica, I’'m afraid I'll syn and byte your ack”
Netmpoy 2002 TXTIITT

ACKs

* Areceiver doesn’t have to ACK every segment
(it can ACK many segments with a single ACK

segment).
 Each ACK can also contain outgoing data
(piggybacking).

* |f a sender doesn’t get an ACK after some time
limit, it resends the data.

TCP Segment Order

 Most TCP implementations will accept out-of-
order segments (if there is room in the buffer).

* Once the missing segments arrive, a single
ACK can be sent for the whole thing.

* Remember: IP delivers TCP segments, and IP is
not reliable - IP datagrams can be lost or arrive
out of order.

Termination

 The TCP layer can send a RST segment that
terminates a connection if something is
wrong.

e Usually the application tells TCP to terminate
the connection politely with a FIN segment.

FIN

Either end of the connection can initiate
termination.

A FIN is sent, which means the application is
done sending data.

The FIN is ACK'd.
The other end must now send a FIN.
That FIN must be ACK'd.

FIN o

SN=X

ACK=X+1 e

FIN
SN=Y

ACK=Y+1 o

Metprog 2002 TCR/IP

EA 537 — @ail 1997

TCP Termination

0 App1: “l have no more data for you”.

e App2: “OK, | understand you are done sending.”
dramatic pause...

e App2: “OK - Now I'm also done sending data”.

a App1: “Roger, Over and Out, Goodbye,
Hastalavista Baby, Adios, It's been real ...”

camera fades to black ...

Netmpoy 2002 TXTIITT

Connection-Oriented

* Before any data transfer, TCP establishes a
connection:

* One TCP entity is waiting for a connection (“server”)
* The other TCP entity (“client”) contacts the server

* The actual procedure for setting up connections is
more complex. cLiEenT

SERVER

 Each connection is . CTECHO" "
waiting for
fu” duplex connection

request

‘ Accept & connection

Data Transer

%

36

TCP

* TCP is not a piece of software. It is a

communications protocol

* TCP manages the flow of datagrams from the
higher layers, as well as incoming datagrams
from the IP layer. TCP resides in the transport

layer, positioned above IP
upper layers and their app

out below the
ications.

37

Sender

| Application

Presentation

Sassion

TCP

TCP providing raliabls End-to-End Communication

TCP

IP

Oata Link)

/ Gataway

IP

P —

Data Link

G:itr.-wny \

IP

Physmnl

Data bink

\ Physical

Bubnetwaork

Physal /

Subinelwork

Receiver

Apn'icaron

Presariafion

Se551N

1CP

I

[ata Lk

Phygcal

Layer 7

081 Lavars

'--- 1
Laver |

38

Connection Management in TCP

Opening a TCP Connection
Closing a TCP Connection
Special Scenarios

State Diagram

39

TCP Connection Establishment

* TCP uses a three-way handshake to open a
connection:

(1) ACTIVE OPEN: Client sends a segment with

— SYN bit set *
— port number of client
— initial sequence number (ISN) of client

(2) PASSIVE OPEN: Server responds with a
segment with

— SYN bit set *
— initial sequence number of server
— ACK for ISN of client

(3) Client acknowledges by sending a segment
with: 40

]

Three-Way Handshake

j—

m |

aida.poly.edu mng.poly.edu

2YN (SegNo = x)

- 1

4.7

(Seqo = x+1, AckNo =y + 1)

41

Three-Way Handshake

E.

I . |
— | 0=

—

j—

> 1031880
' 0
Win 16382 <mss 146133(0)
P

5 172488586. 172488586(0)

E.

I . |
[r—

—

j—

1460>

mng.poly.edu

P

ack 1031880194 win 8760 <mMsSS

ack 172488557 win 17520

42

TCP Connection Termination

Each end of the data flow must be shut down
independently (“half-close”)

If one end is done it sends a FIN segment. This
means that no more data will be sent

Four steps involved:
(1) X sends a FIN to Y (active close)
(2) Y ACKs the FIN,

(at this time: Y can still send data to X)

(3)and Y sends a FIN to X (passive close) *

TCP Connection Termination

[]

j—

aida.poly.edu

F 172488734:172488734(0)

E.
T— : |-
p—

o]

=

mng.poly.edu

—

2ck 1031880221 win 8733

. ack 1031880222 win 8733

44

TCP States

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for Ack
SYN SENT The client has started to open a connection
ESTABLISHED |Normal data transfer state

FIN WAIT 1 Client has said it is finished

FIN WAIT 2 Server has agreed to release

TIMED WAIT | Wait for pending packets (“2MSL wait state”)
CLOSING Both Sides have tried to close simultanesously
CLOSE WAIT |Server has initiated a release

LAST ACK Wait for pending packets

45

TCP States in “Normal” Connection

SYN_SENT

(active open)

ESTABLISHED

FIN_WAIT 1
(active close)

FIN_WAIT 2

TIME_WAIT

Lifetime

SYN (SeqNo = X)

=y +1
SYN (SeqNo =y, ACKNO =X~)

4.7
(AckNo =y + 1)
FIN (SGC]NO = m)
(AckNo =m+ 1)
F
FIN (SeqNo =n)
«

(ACkNO = n+l)

LISTEN

(passive open)

SYN_RCVD

ESTABLISHED

CLOSE_WAIT
(passive close)

LAST_ACK

CLOSED

46

UDP: User Datagram Protocol

* The User Datagram Protocol (UDP) is a transport layer protocol defined
for use with the IP network layer protocol. It is defined by RFC 768
written by John Postel. It provides a best-effort datagram service to
an End System (IP host).

* The service provided by UDP is an unreliable service that provides no
guarantees for delivery and no protection from duplication (e.g. if this
arises due to software errors within an Intermediate System (IS)). The
simplicity of UDP reduces the overhead from using the protocol and
the services may be adequate in many cases.

 UDP provides a minimal, unreliable, best-effort, message-passing
transport to applications and upper-layer protocols

OS5I MODEL

Application Layer

Presentation Layer

Session Layer

UDP. TP Transport Layer
i Nehwork Layer

Ethernet Data Link Layer
Physical Layer

UDP Characteristics

End-to-End: an application sends/receives
data to/from another application.

Connectionless: Application does not need
to preestablish communication before
sending data; application does not need to
terminate communication when finished.

Message-oriented: application
sends/receives individual messages (UDP
datagram), not packets.

Best-effort: same best-effort delivery

Protocol Port Number

UDP uses Port Number to identify an application as
an endpoint.

UDP messages are delivered to the port specified in
the message by the sending application

In general, a port can be used for any datagram, as
long as the sender and the receiver agrees

In practice, a collection of well-known ports are used
for special purposes such as telnet, ftp, and email.
E.g. port 7 for Echo application.

Local operating system provides an interface for
processes to specify and access a port.

UDP Multiplexing & Demultiplexing

Port 1

PN

Port 2 ! Port 3

UDP : Demultiplexing
Baszed On Port

I

LUDP Datagram arrives

IP Layer

. Sender: multiplexing of UDP datagrams.

— UDP datagrams are received from multiple application

programs.

— Assingle sequence of UDP datagrams is passed to IP layer.

- Recelver: demultiplexing of UDP

datagrams.

— Single sequence of UDP datagrams received from IP layer.
— UDP datagram received is passed to appropriate application.

UDP Datagram Format

O 1& 21
SOUERECE FORT DESTINATION FORT
MEZ=2AGE LERGTH CHECESUTV
DATA. .,

Source Port - 16 bit port number
Destination Port - 16 bit port number
Length (of UDP header + data) - 16 bit count of octets

UDP checksum - 16 bit field. if 0, then there is no checksum, else it is a
checksum over a pseudo header + UDP data area

2

3 Bytes

UDP Header UDP Data

T

Source port number | Destination port number
16 bits 16 bits
Total length Checksum
16 bits 16 bits

EA 537 — @add 1997

Encapsulation and Layering

= Protocol layering
Conceptual Layering

Application

User Datagram (UJDP)

Internat (1P}

« UDP encapsulation

LuoF

‘

l

IF
HEADE

4

IF DATA AREA

FRAME
HEADER

FRAME DATA AREA

Network Interfacsa

 UDP message is encapsulated into an IP datagram.

* |P datagram in turn is encapsulated into a physical frame
for actually delivery.

UDP—User Datagram Protocol

* An unreliable, connectionless transport layer protocol

 Two additional functions beyond IP:

— Demultiplexing: deliver to different upper layer entities such as
DNS, RTP, SNMP based on the destination port # in the header.
i.e., UDP can support multiple applications in the same end
systems.

— (Optionally) check the integrity of entire UDP. (recall IP only checks
the integrity of IP header.)
 If source does not want to compute checksum, fill checksum with all Os.
* If compute checksum and the checksum happens to be Os, then fill all 1s.

 UDP checksum computation is similar to IP checksum, with two more:
— Add extra Os to entire datagram if not multiple of 16 bits.
— Add pseudoheader to the beginning of datagram. UDP pseudoheader

EA 537 — @adl 1997

TCP

UDP

Keeps track of lost packets. Makes sure that
lost packets are re-sent

Doesn’t keep track of lost packets

Adds sequence numbers to packets and
reorders any packets that arrive in the wrong
order

Doesn'’t care about packet arrival order

Slower, because of all added additional
functionality

Faster, because it lacks any extra features

Requires more computer resources, because
the OS needs to keep track of ongoing
communication sessions and manage them
on a much deeper level

Requires less computer resources

Examples of programs and services that use
TCP:

- HTTP

- HTTPS

- FTP

- Many computer games

Examples of programs and services that use
UDP:

- DNS

- IP telephony

- DHCP

- Many computer games

Network Programming in Java

TCP vs. UDP

No. TCP UDP
1 This Connection oriented protocol This is connection-less protocol
The TCP connection is byte stream The UDP connection is a message stream
2
It does not support multicasting and | It supports broadcasting
3 broadcasting
It provides error control and flow control | The error control and flow control is not
4 provided
TCP supports full duplex transmission UDP does not support full duplex
5 transmission
It is reliable service of data transmission |This is an unreliable service of data
6 transmission
The TCP packet is called as segment The UDP packet is called as user
7

datagram.

http://www.tusharkute.com

EA 537 — @alld 1997

Differences Between TCP and UDP

TCP

uppP

Sequenced

Unseqguenced

Reliable -sequence numbers,

acknowledgments, and 3-way
handshake

Unreliable -best effort only

Connection Oriented

Connectionless

Virtual Circuits

Low Overhead

Checksum for Ermmor Checking

Checksum for Error Checking

Uses buffer management to
avoid overflow, uses sliding
window to maximize bandwidth
efficiency

Mo flow control

Assigns datagram size
dynamically for efficiency

Every datagram segment is the
same size

EA 537 — @all 1997

