
EL 537 - Fall 1997

DATA COMMUNICATION AND
COMPUTER NETWORKS: syllabus

• UNIT 3

• Transport layer: Transport layer services , UDP ,
TCP Protocols , TCP services , TCP features,
Connection Management , Congestion control
SCTP Protocol (Stream Control Transmission
Protocol), SCTP Services, SCTP features , an SCTP
Association

• Application layer: SMTP , POP, IMAP and MIME
,DHCP (Dynamic Host Configuration Protocol) ,
DHCP Operations , Configuration FTP , SSH

Transport layer protocol

• The transmission control protocol (TCP) is used for
applications in which reliable connections between hosts
are necessary. TCP checks for transmission errors, lost
packets, packets out of order, etc, and tries to automatically
correct these without "bothering" the application program.
It also does flow control, slowing transmission if it is too
fast for the receiver.

• The user datagram protocol (UDP), is an unreliable
transport protocol with no sessions or flow control and
optional error checking. UDP just sends packets as soon as
requested and forgets about them. It is faster than TCP, and
is suitable for isochronous applications like voice over
IP (VOIP) or streaming video where error correction is
pointless.

TCP-TRANSMISISON CONTROL
PROTOCOL

4

Overview

TCP = Transmission Control Protocol

• Connection-oriented protocol

• Provides a reliable unicast end-to-end byte
stream over an unreliable internetwork.

5

TCP

IP Internetwork

B
y
te

 S
tr

e
a

m

B
y
te

 S
tr

e
a

m

TCP

TCP
Transmission Control Protocol

• TCP is an alternative transport layer
protocol over IP.

• TCP provides:

– Connection-oriented

– Reliable

– Full-duplex

– Byte-Stream

Connection-Oriented

• Connection oriented means that a virtual
connection is established before any user
data is transferred.

• If the connection cannot be established - the
user program is notified.

• If the connection is ever interrupted - the
user program(s) is notified.

Reliable
• Reliable means that every transmission of data is

acknowledged by the receiver.

• If the sender does not receive acknowledgement
within a specified amount of time, the sender
retransmits the data.

• Byte stream is broken up into chunks which

are called seg-ments

• Receiver sends acknowledgements (ACKs) for

segments

• Detecting errors:

Byte Stream

• Stream means that the connection is
treated as a stream of bytes.

• The user application does not need to
package data in individual datagrams (as
with UDP).

Byte Stream Service

• To the lower layers, TCP handles data in blocks,
the segments.

• To the higher layers TCP handles data as a
sequence of bytes and does not identify
boundaries between bytes

• So: Higher layers do not know about the
beginning and end of
segments !

10

TCP

Application

1. write 100 bytes

2. write 20 bytes

queue of

bytes to be

transmitted TCP

queue of

bytes that

have been

received

Application

1. read 40 bytes

2. read 40 bytes

3. read 40 bytes

Segments

Buffering

• TCP is responsible for buffering data
and determining when it is time to
send a datagram.

• It is possible for an application to tell
TCP to send the data it has buffered
without waiting for a buffer to fill up.

Full Duplex

• TCP provides transfer in both directions.

• To the application program these appear as 2
unrelated data streams, although TCP can
piggyback control and data communication by
providing control information (such as an
ACK) along with user data.

TCP Segments

• The chunk of data that TCP asks IP to
deliver is called a TCP segment.

• Each segment contains:

– data bytes from the byte stream

– control information that identifies the
data bytes

Netprog 2002 TCP/IP

TCP Segment Format

EL 537 - Fall 1997

TCP header fields

• Port Number:
• A port number identifies the endpoint of a connection.

• A pair <IP address, port number> identifies one
endpoint of a connection.

• Two pairs <client IP address, server port
number> and <server IP address, server port
number> identify a TCP connection.

15

TCP

IP

Applications

23 10480Ports:

TCP

IP

Applications

7 1680 Ports:

TCP header fields

• Sequence Number (SeqNo):

– Sequence number is 32 bits long.

– So the range of SeqNo is
0 <= SeqNo <= 232 -1  4.3 Gbyte

– Each sequence number identifies a byte in the
byte stream

– Initial Sequence Number (ISN) of a connection is
set during connection establishment

16

TCP header fields

• Acknowledgement Number (AckNo):

– Acknowledgements are piggybacked, I.e

 a segment from A -> B can contain an
acknowledgement for a data sent in the B -> A direction

– A hosts uses the AckNo field to send
acknowledgements. (If a host sends an AckNo in a segment it

sets the “ACK flag”)

– The AckNo contains the next SeqNo that a hosts
wants to receive
Example: The acknowledgement for a segment

17

TCP header fields

• Acknowledge Number (cont’d)

– TCP uses the sliding window flow protocol to
regulate the flow of traffic from sender to receiver

– TCP uses the following variation of sliding window:
– no NACKs (Negative ACKnowledgement)

– only cumulative ACKs

• Example:

Assume: Sender sends two segments with “1..1500”
and “1501..3000”, but receiver only gets the
second segment.

In this case, the receiver cannot acknowledge the
second packet. It can only send AckNo=1

18

TCP header fields

• Header Length (4bits):

– Length of header in 32-bit words

– Note that TCP header has variable length (with
minimum 20 bytes)

19

TCP header fields

• Flag bits:

– URG: Urgent pointer is valid
– If the bit is set, the following bytes contain an urgent message in the range:

SeqNo <= urgent message <= SeqNo+urgent pointer

– ACK: Acknowledgement Number is valid

– PSH: PUSH Flag
– Notification from sender to the receiver that the receiver should pass all data that it has to

the application.

– Normally set by sender when the sender’s buffer is empty

20

TCP header fields

• Flag bits:

– RST: Reset the connection
– The flag causes the receiver to reset the connection

– Receiver of a RST terminates the connection and indicates higher layer application about the
reset

– SYN: Synchronize sequence numbers
– Sent in the first packet when initiating a connection

– FIN: Sender is finished with sending
– Used for closing a connection

– Both sides of a connection must send a FIN

21

TCP header fields

• Window Size:

– Each side of the connection advertises the
window size

– Window size is the maximum number of bytes
that a receiver can accept.

– Maximum window size is 216-1= 65535 bytes

• TCP Checksum:

– TCP checksum covers over both TCP header and
TCP data (also covers some parts of the IP header)

• Urgent Pointer:

– Only valid if URG flag is set

22

TCP Lingo

• When a client requests a connection it sends a
“SYN” segment (a special TCP segment) to the
server port.

• SYN stands for synchronize. The SYN message
includes the client’s ISN.

• ISN is Initial Sequence Number.

• Every TCP segment includes a Sequence
Number that refers to the first byte of data
included in the segment.

• Every TCP segment includes an
Acknowledgement Number that indicates the

Netprog 2002 TCP/IP

And more...

• There are a bunch of control flags:

– URG: urgent data included.

– ACK: this segment is (among other things) an
acknowledgement.

– RST: error – connection must be reset.

– SYN: synchronize Sequence Numbers (setup)

– FIN: polite connection termination.

• MSS: Maximum segment size (A TCP option)

• Window: Every ACK includes a Window field
that tells the sender how many bytes it can
send before the receiver will have to toss it

Netprog 2002 TCP/IP

TCP Connection Creation

• Programming details later - for now we are
concerned with the actual communication.

• A server accepts a connection.

– Must be looking for new connections!

• A client requests a connection.

– Must know where the server is!

• A client starts by sending a SYN segment with
the following information:

– Client’s ISN (generated pseudo-randomly)

– Maximum Receive Window for client.
Netprog 2002 TCP/IP

Server Response

• When a waiting server sees a new
connection request, the server sends back a
SYN segment with:

– Server’s ISN (generated pseudo-randomly)

– Request Number is Client ISN+1

– Maximum Receive Window for server.

– Optionally (but usually) MSS

– No payload! (Only TCP headers)

• When the Server’s SYN is received, the
client sends back an ACK with:

– Acknowledgment Number is Server’s ISN+1
Netprog 2002 TCP/IP

EL 537 - Fall 1997

TCP 3-way handshake

Client: “I want to talk, and I’m starting with byte
number X”.

Server: “OK, I’m here and I’ll talk. My first byte will
be called number Y, and I know your first byte will
be number X+1”.

Client: “Got it - you start at byte number Y+1”.

Bill: “Monica, I’m afraid I’ll syn and byte your ack”
Netprog 2002 TCP/IP

1

2

3

?

ACKs

• A receiver doesn’t have to ACK every segment
(it can ACK many segments with a single ACK
segment).

• Each ACK can also contain outgoing data
(piggybacking).

• If a sender doesn’t get an ACK after some time
limit, it resends the data.

Netprog 2002 TCP/IP

TCP Segment Order

• Most TCP implementations will accept out-of-
order segments (if there is room in the buffer).

• Once the missing segments arrive, a single
ACK can be sent for the whole thing.

• Remember: IP delivers TCP segments, and IP is
not reliable - IP datagrams can be lost or arrive
out of order.

Netprog 2002 TCP/IP

Termination

• The TCP layer can send a RST segment that
terminates a connection if something is
wrong.

• Usually the application tells TCP to terminate
the connection politely with a FIN segment.

Netprog 2002 TCP/IP

FIN

• Either end of the connection can initiate
termination.

• A FIN is sent, which means the application is
done sending data.

• The FIN is ACK’d.

• The other end must now send a FIN.

• That FIN must be ACK’d.

Netprog 2002 TCP/IP

EL 537 - Fall 1997

Netprog 2002 TCP/IP

TCP Termination

1

2

3

4

App1: “I have no more data for you”.

App2: “OK, I understand you are done sending.”

dramatic pause…

App2: “OK - Now I’m also done sending data”.

App1: “Roger, Over and Out, Goodbye,

Hastalavista Baby, Adios, It’s been real ...”

camera fades to black ...

Connection-Oriented
• Before any data transfer, TCP establishes a

connection:
• One TCP entity is waiting for a connection (“server”)

• The other TCP entity (“client”) contacts the server

• The actual procedure for setting up connections is
more complex.

• Each connection is
full duplex

36

CLIENT SERVER

waiting for

connection

request

Request a connection

Accept a connection

Disconnect

Data Transer

TCP

• TCP is not a piece of software. It is a
communications protocol.

• TCP manages the flow of datagrams from the
higher layers, as well as incoming datagrams
from the IP layer. TCP resides in the transport
layer, positioned above IP but below the
upper layers and their applications.

37

TCP

38

Connection Management in TCP

• Opening a TCP Connection

• Closing a TCP Connection

• Special Scenarios

• State Diagram

39

TCP Connection Establishment

• TCP uses a three-way handshake to open a
connection:

 (1) ACTIVE OPEN: Client sends a segment with
– SYN bit set *

– port number of client

– initial sequence number (ISN) of client

 (2) PASSIVE OPEN: Server responds with a
segment with

– SYN bit set *

– initial sequence number of server

– ACK for ISN of client

(3) Client acknowledges by sending a segment
with:

– ACK ISN of server (* counts as one

40

Three-Way Handshake

aida.poly.edu mng.poly.edu

SYN (SeqNo = x)

SYN (SeqNo = y, AckNo = x + 1)

(SeqNo = x+1, AckNo = y + 1)

41

Three-Way Handshake

aida.poly.edu mng.poly.edu

S 1031880193:1031880193(0)win 16384 <mss 1460, ...>

S 172488586:172488586(0)

ack 1031880194 win 8760 <mss 1460>

ack 172488587 win 17520

42

TCP Connection Termination

• Each end of the data flow must be shut down
independently (“half-close”)

• If one end is done it sends a FIN segment. This
means that no more data will be sent

• Four steps involved:

 (1) X sends a FIN to Y (active close)

 (2) Y ACKs the FIN,

 (at this time: Y can still send data to X)

 (3) and Y sends a FIN to X (passive close)
43

TCP Connection Termination

aida.poly.edu mng.poly.edu

F 172488734:172488734(0)

ack 1031880221 win 8733

. ack 172488735 win 17484

. ack 1031880222 win 8733

F 1031880221:1031880221(0)
ack 172488735 win 17520

44

TCP States

45

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for Ack

SYN SENT The client has started to open a connection

ESTABLISHED Normal data transfer state

FIN WAIT 1 Client has said it is finished

FIN WAIT 2 Server has agreed to release

TIMED WAIT Wait for pending packets (“2MSL wait state”)

CLOSING Both Sides have tried to close simultanesously

CLOSE WAIT Server has initiated a release

LAST ACK Wait for pending packets

TCP States in “Normal” Connection
Lifetime
SYN (SeqNo = x)

SYN (SeqNo = y, AckNo = x + 1)

(AckNo = y + 1)

SYN_SENT
(active open)

SYN_RCVD

ESTABLISHED

ESTABLISHED

FIN_WAIT_1

(active close)

LISTEN
(passive open)

FIN (SeqNo = m)

CLOSE_WAIT

(passive close)

(AckNo = m+ 1)

FIN (SeqNo = n)

 (AckNo = n+1)
LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED

46

UDP: User Datagram Protocol

• The User Datagram Protocol (UDP) is a transport layer protocol defined
for use with the IP network layer protocol. It is defined by RFC 768
written by John Postel. It provides a best-effort datagram service to
an End System (IP host).

• The service provided by UDP is an unreliable service that provides no
guarantees for delivery and no protection from duplication (e.g. if this
arises due to software errors within an Intermediate System (IS)). The
simplicity of UDP reduces the overhead from using the protocol and
the services may be adequate in many cases.

• UDP provides a minimal, unreliable, best-effort, message-passing
transport to applications and upper-layer protocols

FALL 2005

EL 537 - Fall 1997

UDP Characteristics

• End-to-End: an application sends/receives
data to/from another application.

• Connectionless: Application does not need
to preestablish communication before
sending data; application does not need to
terminate communication when finished.

• Message-oriented: application
sends/receives individual messages (UDP
datagram), not packets.

• Best-effort: same best-effort delivery
semantics as IP. I.e. message can be lost,

FALL 2005 CSI 4118  UNIVERSITY OF OTTAWA

Protocol Port Number

• UDP uses Port Number to identify an application as
an endpoint.

• UDP messages are delivered to the port specified in
the message by the sending application

• In general, a port can be used for any datagram, as
long as the sender and the receiver agrees

• In practice, a collection of well-known ports are used
for special purposes such as telnet, ftp, and email.
E.g. port 7 for Echo application.

• Local operating system provides an interface for
processes to specify and access a port.

 FALL 2005 CSI 4118  UNIVERSITY OF OTTAWA

UDP Multiplexing & Demultiplexing

• Sender: multiplexing of UDP datagrams.
– UDP datagrams are received from multiple application

programs.

– A single sequence of UDP datagrams is passed to IP layer.

• Receiver: demultiplexing of UDP

datagrams.
– Single sequence of UDP datagrams received from IP layer.

– UDP datagram received is passed to appropriate application.

FALL 2005 CSI 4118  UNIVERSITY OF OTTAWA

UDP Datagram Format

• Source Port - 16 bit port number

• Destination Port - 16 bit port number

• Length (of UDP header + data) - 16 bit count of octets

• UDP checksum - 16 bit field. if 0, then there is no checksum, else it is a

checksum over a pseudo header + UDP data area

FALL 2005 CSI 4118  UNIVERSITY OF OTTAWA

EL 537 - Fall 1997

Encapsulation and Layering

• UDP message is encapsulated into an IP datagram.

• IP datagram in turn is encapsulated into a physical frame
for actually delivery.

FALL 2005 CSI 4118  UNIVERSITY OF OTTAWA

UDP—User Datagram Protocol
• An unreliable, connectionless transport layer protocol

• Two additional functions beyond IP:

– Demultiplexing: deliver to different upper layer entities such as
DNS, RTP, SNMP based on the destination port # in the header.
i.e., UDP can support multiple applications in the same end
systems.

– (Optionally) check the integrity of entire UDP. (recall IP only checks
the integrity of IP header.)

• If source does not want to compute checksum, fill checksum with all 0s.

• If compute checksum and the checksum happens to be 0s, then fill all 1s.

• UDP checksum computation is similar to IP checksum, with two more:

– Add extra 0s to entire datagram if not multiple of 16 bits.

– Add pseudoheader to the beginning of datagram. UDP pseudoheader

55

EL 537 - Fall 1997

EL 537 - Fall 1997

EL 537 - Fall 1997

EL 537 - Fall 1997

